Lecture 13

Data Manipulation: Binary Data

Text:
$4^{\text {th }}$ Edition: Chapter 13
$5^{\text {th }}$ Edition: Chapter 12

Processing Binary Numbers

Addition and Subtraction

Examples: (All variables are words)

Java
$\mathrm{I}=\mathrm{J}+\mathrm{K}$;
$P=A+B-C ;$
$M=(N+P)-(R+S)$

Assembly
MOV AX,J
ADD AX,K
MOV I,AX

MOV AX, A
ADD AX, B
SUB AX, C
MOV $P, A X$
MOV AX,N
ADD AX, P
MOV TEMP1,AX
MOV AX,R
ADD AX,S
MOV TEMP2,AX
MOV AX,TEMP1
SUB AX,TEMP2
MOV M,AX

Addition of Doublewords on a 16-bit machine

Definition of doublewords:
FIRSTH DW 0043h
FIRSTL DW 89C3h
$4300 \quad$ C389
$\begin{array}{llll}\text { SECNDH } & \text { DW } & 0008 \mathrm{~h} & 0800 \\ \text { SECNDL } & \text { DW } & \text { C42Eh } & \end{array}$
$\begin{array}{lll}\text { THIRDH } & \text { DW } & ? \\ \text { THIRDL } & \text { DW } & ?\end{array}$
Code for addition:
MOV AX,FIRSTL ADD AX, SECNDL (the carry flag is set to 1) MOV THIRDL, AX

MOV AX,FIRSTH
ADC AX, SECNDH MOV THIRDH, AX

AX

004 C 4C00 F14D

MULTIPLICATION

MUL Unsigned data
IMUL Signed data
Byte times Byte

- The multiplicand is in the AL register
- The multiplier is in a byte (memory or register)
- The product is a WORD in the AX register

Word times Word

- The multiplicand is in the AX register
- The multiplier is in a word (memory or register)
- The product is a DOUBLEWORD high order bits in the DX register low order bits in the AX register

Doubleword times Doubleword

- The multiplicand is in the EAX register
- The multiplier a doubleword (memory or register)
- The product is a QUADWORD
high order bits in the EDX register
low order bits in the EAX register

Sign of Result	Second Operand	
First Operand	+	-
+	+	-
-	-	+

EXAMPLES:

Original values:

DX	AX	CX	"CAT"	"DOG"
0255	0054	0003	FF04	0021

After the independent instructions:

	DX	AX	CX	"CAT"	"DOG"
MUL CL	0255	OOFC	0003	FFO4	0021
$A L$ is multiplied by $C L$. The result is a word in $A X$. $54 h * 03 h=00 F C h$					
MUL DOG	0000	OAD4	0003	FFO4	0021
AX is multiplied by 0021 h . The result is a doubleword in $D X: A X .0054 h * 0021 h=00000 A D 4$					
MUL CAT	0053	AD50	0003	FFO4	0021
AX is multiplied by the unsigned value FF04h. $0054 h^{*} F F 04 h=84 * 65,284=5,483,856=0053 A D 50 h$					
IMUL CAT	FFFF	AD50	0003	FF04	0021
AX is multiplied by the signed FF04h. $0054 h * F F 04 h=84 *-252=-21,168=F F F F A D 50 h$					

DIVISION

DIV	Unsigned data
IDIV	Signed data

Word - Byte

- The dividend is in the AX register
- The divisor is a byte (memory or register)
- The quotient is placed in AL
- The remainder is placed in AH

Doubleword \div Word

- The dividend is in the DX:AX register pair
- The divisor is a word (memory or register)
- The quotient is placed in AX
- The remainder is placed in DX

Quadword :- Doubleword

- The dividend is in the EDX:EAX register pair
- The divisor is a doubleword (memory or register)
- The quotient is placed in EAX
- The remainder is placed in EDX

Sign of Quot. ; rem.		Second Operand	
First Operand	+	-	
+	$+;+$	$-;+$	
-	$-;-$	$+;-$	

Original values:

DX	AX	CX	"CAT"	"DOG"
0000	0056	0003	FFF4	0021

After the independent instructions:

	DX	AX	CX	"CAT"	"DOG"
DIV CL	0000	021C	0003	FFF4	0021
$A X$ is Divided by CL. The quotient goes in $A L$, the remainder in $A H$.$0056 h \div 03 h=86 \div 3=28 \text { r. } 2=1 \text { Ch r. } 02 h$					
DIV DOG	0014	0002	0003	FFF4	0021
$D X: A X$ is Divided by 0021h. The quotient goes in $A X$, the remainder in $D X$. $0000: 0056 \mathrm{~h} \div 0021 \mathrm{~h}=86 \div 33=2$ r. $20=0002 \mathrm{~h}$ r. 0014					
DIV CAT	0056	0000	0003	FFF4	0021
$D X: A X$ is Divided by the unsigned value FF04h. 0000:0056h $\div F F F 4 h=$$86 \div 65,524=0 \text { r. } 86=0000 \mathrm{~h} \text { r. } 0056 \mathrm{~h}$					
IDIV CAT	0002	FFF9	0003	FFF4	0021
$D X: A X$ is Divided by the signed FFF4h. 0000:0056h $\div F F F 4 h=$ $86 \div-12=-7$ r. $2=F F F 9 h r .0002 h$					

A negative dividend in a register pair
Suppose you want to do the calculation (in decimal):

$$
-86 \div 12=-7 \text { r. }-2
$$

The number - 86 must be a doubleword in the DX:AX register pair.

Clearly, AX should contain FFAAh, which is the hex value for -86 .

DX, however, must not contain leading zeros as before (when the value in AX was positive):

This makes the value in the register pair 0000FFAA, which is positive!

The DX register needs to be filled with leading 1's (sign bits):

DX AX
FFFF FFAA

CBW (Convert Byte to Word)
Extend the sign bit in the $A L$ register through the $A H$ register.
CWD (Convert Word to Doubleword)
Extend the sign bit in the AX register through the DX register.

OVERFLOW and Division

It is possible for the quotient to be too large to be placed in the receiving location.

Example:
ONE DW 001h
MOV DX,0043h
MOV AX,1544h
DIV ONE
$00431544 \div 0001$

$$
00431544 \div 0001=431544 \text { R. } 0
$$

The quotient is too large to be placed in $A X$!
Rule:
The divisor must be greater than the left half of the dividend.
$00214 \mathrm{C} 62 \div 0054=657 \mathrm{~B}$ r. 0006
$035 B \div \mathbf{0 4}=\mathrm{D} 6$ R. 3
0092 300A $\div 0091=10218$ r. 0072

Exercises - Lecture 13

1. Fill in the results of each instruction in the table below. Do each one independently, using the original values for each calculation.

MinusThree	DW	-3
Seven	DW	7
Two	DB	2

	DX	AX	BX
	$\mathbf{0 0 0 0}$	$\mathbf{0 0 2 5}$	$\mathbf{0 0 0 8}$
mul bx			
div bx			
mul two			
mul MinusThree			
imul two			
imul MinusThree			
div Two			
div Seven			
div bx			
div bl			
idiv MinusThree			

2. Which register values are illegal for div $B X$

DX	AX	BX	legal	illegal
0000	0004	0003		
0000	FFF6	0002		
0042	8 AC3	009 A		
0042	$8 A C 3$	0004		
FFFF	FFF2	0002		

