
Lecture 13

Data Manipulation: Binary Data

Text: 4th Edition: Chapter 13 5th Edition: Chapter 12

Processing Binary Numbers

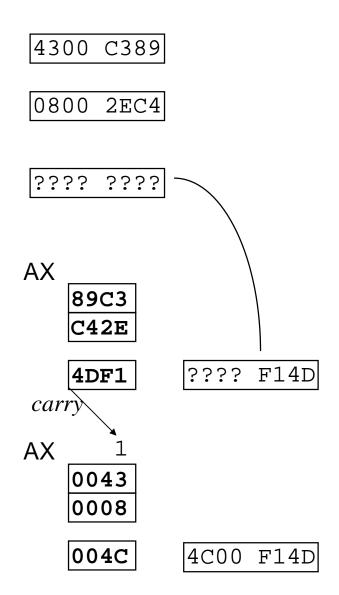
Addition and Subtraction

Examples: (All variables are words)

Java	Assembly		
I=J+K;	MOV ADD MOV	AX,J AX,K I,AX	
P=A+B-C;	MOV ADD SUB MOV	AX,A AX,B AX,C P,AX	
M=(N+P)-(R+S)	MOV ADD MOV ADD MOV MOV SUB MOV	AX,N AX,P TEMP1,AX AX,R AX,S TEMP2,AX AX,TEMP1 AX,TEMP2 M,AX	

Addition of Doublewords on a 16-bit machine

32-bit addition


Definition of doublewords:

FIRSTH	DW	0043h
FIRSTL	DW	89C3h
SECNDH	DW	0008h
SECNDL	DW	C42Eh
THIRDH	DW	?
THIRDL	DW	?

Code for addition:

MOV	AX,FIRSTL
ADD	AX, SECNDL
(the carr	y flag is set to 1)
MOV	THIRDL,AX

MOV	AX,FIRSTH
ADC	AX,SECNDH
MOV	THIRDH,AX

MULTIPLICATION

MUL	Unsigned data
IMUL	Signed data

Byte times Byte

- The multiplicand is in the AL register
- The multiplier is in a byte (memory or register)
- The product is a WORD in the AX register

Word times Word

- The multiplicand is in the AX register
- The multiplier is in a word (memory or register)
- The product is a DOUBLEWORD high order bits in the DX register low order bits in the AX register

Doubleword times Doubleword

- The multiplicand is in the EAX register
- The multiplier a doubleword (memory or register)
- The product is a QUADWORD high order bits in the EDX register low order bits in the EAX register

Sign of Result	Second Operand			
First Operand	+ -			
+	+	-		
-	-	+		

EXAMPLES:

Original values:

DX	AX	СХ	"CAT"	"DOG"
0255	0054	0003	FF04	0021

After the independent instructions:

	DX	AX	CX	"CAT"	"DOG"
MUL CL	0255	00FC	0003	FF04	0021
AL is multiplied by	CL. The	result is	a word in	n AX.	
54h*03h=00FCh					
		Γ	ſ	Γ	
MUL DOG	0000	0AD4	0003	FF04	0021
AX is multiplied by	<i>0021h</i> . 2	The resul	t is a dou	bleword	in
DX:AX. 0054h*00	21h=000	000AD4			
			1		
MUL CAT	0053	AD50	0003	FF04	0021
AX is multiplied by	the unsi	gned val	ue FF041	'n.	
0054h*FF04h=84*	*65,284=	5,483,85	56=0053A	AD50h	
IMUL CAT	FFFF	AD50	0003	FF04	0021
AX is multiplied by the signed FF04h.					
0054h*FF04h=84*-252=-21,168=FFFFAD50h					

DIVISION

DIV	Unsigned data
IDIV	Signed data

Word ÷ Byte

- The dividend is in the AX register
- The divisor is a byte (memory or register)
- The quotient is placed in AL
- The remainder is placed in AH

 $\textbf{Doubleword} \div \textbf{Word}$

- The dividend is in the DX:AX register pair
- The divisor is a word (memory or register)
- The quotient is placed in AX
- The remainder is placed in DX

Quadword ÷ Doubleword

- The dividend is in the EDX:EAX register pair
- The divisor is a doubleword (memory or register)
- The quotient is placed in EAX
- The remainder is placed in EDX

Sign of	Second Operand		
Quot. ; rem.			
First Operand	+	-	
+	+;+	-;+	
-	-;-	+;-	

Original values:

DX	AX	СХ	"CAT"	"DOG"
0000	0056	0003	FFF4	0021

After the independent instructions:

	DX	AX	CX	"CAT"	"DOG"
DIV CL	0000	021C	0003	FFF4	0021
AX is Divided by C	L. The qu	uotient g	oes in AL	, the rem	ainder
in AH.					
$0056h \div 03h = 86 \div 3$	=28 r. 2=	= 1 <i>Ch r</i> .	02h		
			0.000		0.0.0.1
DIV DOG	0014	0002	0003	FFF4	0021
DX:AX is Divided	by 0021h	. The qu	otient goe	es in AX,	the
remainder in DX.					
0000:0056h ÷0021	h=86÷33	8=2 r. 20	=0002h r	: 0014	
DIV CAT	0056	0000	0003	FFF4	0021
DX:AX is Divided	by the un	signed v	alue FF0	94h.	
0000:0056h÷FFF4	4h =				
86÷65,524=0 r. 86	=0000h	r.0056h			
IDIV CAT	0002	FFF9	0003	FFF4	0021
DX:AX is Divided by the signed FFF4h.					
$0000:0056h \div FFF4h =$					
$86 \div -12 = -7 r. 2 = FFF9h r. 0002h$					

A negative dividend in a register pair

Suppose you want to do the calculation (in decimal):

-86÷12 = -7 r. -2

The number -86 must be a doubleword in the DX:AX register pair.

Clearly, AX should contain FFAAh, which is the hex value for -86.	DX AX FFAA
DX, however, must not contain leading zeros as before (when the value in AX was positive):	
This makes the value in the register pair 0000FFAA, which is positive!	DX AX 0000 FFAA
The DX register needs to be filled with leading 1's (sign bits):	DX AX

CBW (Convert Byte to Word)

Extend the sign bit in the AL register through the AH register.

CWD (Convert Word to Doubleword)

Extend the sign bit in the AX register through the DX register.

OVERFLOW and Division

It is possible for the quotient to be too large to be placed in the receiving location.

Example:

ONE	DW	001h
	MOV MOV DIV	DX,0043h AX,1544h ONE

0043 1544 ÷ 0001

 $00431544 \div 0001 = 431544 \text{ R. }0$

The quotient is too large to be placed in AX!

Rule:

The divisor must be greater than the left half of the dividend.

0021 4C62 ÷ 0054 = 657B r. 0006 035B ÷ 04 = D6 R. 3 0092 300A ÷ 0091 = 10218 r. 0072

Exercises - Lecture 13

1. Fill in the results of each instruction in the table below. Do each one independently, using the original values for each calculation.

MinusThree	DW	-3
Seven	DW	7
Two	DB	2

		DX	AX	BX
		0000	0025	0008
mul	bx			
div	bx			
mul	two			
mul	MinusThree			
imul	two			
imul	MinusThree			
div	Two			
div	Seven			
div	bx			
div	bl			
idiv	MinusThree			

2. Which register values are illegal for div BX

DX	AX	BX	legal	illegal
0000	0004	0003		
0000	FFF6	0002		
0042	8AC3	009A		
0042	8AC3	0004		
FFFF	FFF2	0002		